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The stabilisation of explosive instabilities in the presence of 
a third-order nonlinear effect 

S De?, T P Khan and R K Roychowdhuryj 
Department of Physics, Jadavpur University, Calcutta -32, West Bengal, India 

Received 4 June 1980, in final form 5 January 1981 

Abstract. The interaction of three waves in the presence of a third-order nonlinear 
interaction term is investigated by the method of nonlinear perturbation. The anaiytical 
solutions obtained here are found to be in agreement with the numerical solutions already 
given by Weiland and Wilhelmsson, and thus complement their work. 

1. Introduction 

This is a sequel to our previous paper (Khan et a1 1980), where we discussed within the 
framework of nonlinear perturbation theory (Coffey and Ford 1969) how the nonlinear 
three-wave interaction becomes explosive in the presence of linear damping of the 
waves. It was shown that in the general case when the coupling coefficients become 
complex with their phases not equal to zero or T, the problem of the occurrence of an 
explosive instability becomes considerably more complicated. It has been noted that 
the explosive instability studied by a well defined phase approach is a first-order 
phenomenon, and this type of instability may be developed in higher orders of 
nonlinear perturbation. 

Recently, Fukai etal (1969,1970), Byers etal  (1971) and Oraevskii etal  (1973a,b) 
have studied the influence of third-order nonlinear terms on explosive instabilities in 
the coherent phase description for real second-order coupling factors. An upper limit 
for the amplitude of a nonlinear instability as a result of an amplitude-dependent 
frequency shift was also pointed out. Nonlinear stabilisation of explosive flute instabil- 
ities of mirror confined plasma has been discussed by Dum and Sudan (1969). Weiland 
and Wilhelmsson (1973) and Weiland (1974) have extended the investigation to include 
a linear dissipation and also an imaginary part of the third-order frequency shift. In 
these papers the saturation of the explosive instability by third-order terms is studied 
analytically and by means of computers. Nonlinear instabilities arising from the 
interaction of positive and negative energy waves have recently been observed on a 
computer model (Byers etal  1971, Shchinov eta1 1973). The influence of an explosive 
instability on the plasma distribution has also been studied (Hamasaki and Krall 1971). 
Wilhelmsson (1970, 1972) has shown that the imaginary part of the complex third- 
order coupling factors might have a decisive influence for the stabilisation of explosive 
instabilities. 
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In our present paper the effect of nonlinear dissipation on explosive instabilities has 
been considered in the presence of second-order coupling factors. It is observed that 
the amplitudes of the waves lead to stabilisation in the presence of such dissipation 
proportional to the square of the amplitudes, but in the absence of any linear dissipation 
the amplitudes do exhibit unlimited growth. 

2. Basic equations 

The basic equations of the waves interacting nonlinearly to higher orders are 

Following our previous work (Khan et a1 1980), taking the second-order coupling 
factors to be equal to one, we obtain from (1) the corresponding real and imaginary 
parts as 

2 auo/at + youo = E U ~ U ~  COS (4  + eI2) - E U ~ S V ~ ,  

aul/at  + v l ~ l  = E U ~ U ~  COS (4 + eO2)- E ~ U ~ S ~ ; ,  

a u 2 / a t  + V 2 ~ 2  = &uou1 COS (4  +eol) - E ~ U ~ S V ; ,  

u1u2 uou2 U O U l  2 4 = Ao - E  -sin (4 + & ) - E  -sin (4 +002)-~---sin (4 + 8 0 J - E  Sw’ 
U 0  U1 U 2  

where 
2 

j = O  
So’= c p,.; 
~ v ;  = - c Im ( a j k ) u ;  

pi = Reajo - Re ail - Re aj2,  

(the nonlinear frequency shift), 

2 
(the effective nonlinear dissipation), 

k = O  

are the matrix elements of the coupling factors for the third-order terms taking 
normalisation of the amplitudes. 

In order to solve the set of equations (2), we use the method of perturbation due to 
Coffey and Ford (1969), which is suitable for Aw # 0 and has limitations for Aw = 0. To 
separate the secular motion from the rapidly fluctuating motion, a solution is introduced 
of the form 

m 

n = l  
ui=yj+ E n F j n ) ( $ ) ,  i = 1 , 2 , .  . . , r, (3) 

m 

n = l  
4 = 9-i- C enGjn)(@), j = 1 , 2 , .  . . ,s, (4) 
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a 

gi = 1 &"al" ' (y) ,  
n = O  

i = 1 , 2  , . . . ,  r, 

05 

(I, = Aw + EflbO')(y),  j = 1 , 2  , . . . ,  s. 
fl=l 

Inserting (3), (4) in ( 2 )  and using ( 5 )  and (6), we finally obtain, after equating the powers 
of E ,  the following set of equations (for details see Khan et a1 (1980)): 

= 0 ,  b"' = 0,  ( 7 a )  
( 0 )  ai + vjyj = 0,  

1 
2 1/24 

- 
1 -- 

Awi ( v ; + A w  ) 

Also, 

1 1 
sin (eol - e12 + 7 2 )  +-sin (eol - 012)) ab2' = y o y :  (2ilw, 2Aw 

1 1 
sin (eo2 - e12 + ql)  +- sin (eo2 - e12)) - yoavo,  

2Aw 
1 1 

sin (eol - eO2 + v2) + - sin (eo1 - eO2)) 
2Aw 

1 
2Aw 

sin (el2 - eO2 + 70) +- sin (812 - BO2)  

1 1 
sin (eo2 - eol + Tl)  +- sin (eo2 - Boll) 

2 A 0  

1 1 
sin (el2 - 001 + T o )  +-sin (el2 - col)) - y 2 a v 2 ,  

2Aw 
where 

2 2  2 2  
b ( 2 ) - Y 2 Y l  C O S ~ O  1 - ~ ( - - - ) + 7 ( ~ - - ) + ~ ( - - - )  y i y ;  cos71  1 y o y 1  C O S T 2  1 

 YO Awo Aw 2y Aw Aw 2y Aw2 Aw 
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COS (eo2 - e12 + ql) COS (el2 - eO2 + To) +COS (el2 - + -Yi ( 2 8 ~ 1  2Awo Am 
2 2 where Sw = X,=O P l y l .  

Y6 Y 5  
Aw2 hwo 

+ - sin (24  + BOl + 012 + 7 - 1 ~ )  +- sin (24  + 612 + 002 + qo) 

0) )  

Y :  Y :  +-sin (24+601+602+~l)+-s in  (24+601+612+7 
A@ 1 AOO 

2 2  2 2  

- -* sin (24  -t 2612 + q0) + sin (24  + 2602 + 7-11) ( Y O A U O  y i h w i  

3. Solution of the secular motion in second order 

From equations ( 5 )  and (8) we can obtain the second-order equations as 

sin(0ol- 612 + 7-12) + sin(Oo1 - 612) 
2hw 

) - YOSVO] 9 

(602-612+-r)l)+~in (e02-612) 
2ho 

+ y o y z  ( sin 
2Aw1 

sin (601 - eoz + 7-12) I sin(8ol- 602)  

sinl2 - eO2 + 7 - 1 ~ 1 ,  sin (012 - 002)) 
2hwo 2 h w  

sin (602- Ool + 7-11) sin ( 6 0 2  -- 601) 
2Aw 1 2Aw 

2hw 

] - Y 1 &  , + Y 1 Y 2  ( 
+ 

) - .2Sv2]. 
sin (012 - eol + 70) +sin (el2 - 601) 

2hw 

3.1. Case of equal amplitudes 

We consider the dissipative case when all U ,  = v and yi = y to obtain from equation (9) 

j ,  + vy = s 2 y 3 k  (10) 
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+ Im (cyz0) + Im ( ( ~ 2 1 )  + I m  ( ( ~ 2 2 ) .  

The solution of the equation (10) is of the form 
2 -1 /2  Y ( t )  = [ Y 2  + ( t 1 -  B t )  1 

where 

y 2  = e 2 k / u ,  

t l  = (l/Y(0))(1 -Y2Y2(0))1/2, B = ( v / y ( O ) ) ( l  - Y ~ Y ~ ( O ) ) ~ ’ ~ .  
The solution (12) is a soliton and the amplitudes tend to zero for large times. The 
amplitude is limited to a maximum value 

ymax= l / y  = u 1 / 2 / e k 1 / 2 .  (13) 

For y = 0 one has the expression for the amplitude 

Y ( t )  = Y (0)/(1- ut) 
and the time of explosion 

t ,  = l / u .  (15) 

In the limit U-y(0)  this is exactly the same as that obtained by Weiland and 
Wilhelmsson (1977). It is interesting to note that if y is not equal to zero, y(t) stays 
finite. The amplitudes are generally limited for physically realistic situations and the 
singular solution corresponds to the limiting case y = 0. 

3.2. Case of unequal amplitudes 

We assume the effective nonlinear dissipations (Davydova et a1 1975) are such that 

Im ( ~ 1 0 )  = -1m ( c y 0 4  = F,  

Im ( W O )  = - Im ( ( ~ 0 2 )  = F,  

Im (a211 = - Im(a12) = F,  

Im (aii)  = 0, 
(16) 

i = 0, 1, 2. 

With these assumptions, and further with xi = y:, U << A o  (Fukai et a1 1969), the 
constants of motion are obtained as 

xo +x1 +x2 = P, XoXiXz = Q, (17) 

xi = xi e-2Yf, 

where 

T = ( I / ~ u ) ( I  -e-”?. 
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Following our previous work (Khan et a1 1980), we obtain 

and T~ is given by 

where sd-' is the Jacobian elliptic function. 

a = (4Q)1'3, e = 75", A =:& (&+2),  

sin (001 - eO2) = sin (el2 - col) = sin (eo2 - eI2) = S .  

When u ~ ( T )  = - 1, Xi tends to infinity and one can obtain the time of explosion given by 

When the initial conditions are such that uj (0)  = sin(.rr + 8)sd(ll sin28) with 1 a constant, 
all the amplitudes will go to infinity at the same time and the time of explosion is given 
by 

t - 3-114 [ l  -sd-'(cosec 81 sin28)] 
~ E ~ ( S / A W  f p )  

63- 

4. Discussion 

In this paper an attempt has been made to study analytically the saturation of explosive 
instabilities by means of third-order nonlinear effects. The nonlinear effects consider- 
ably change the phase dynamics when the amplitudes are large and the saturation 
occurs as found both numerically and analytically. Numerical solutions of these 
problems have already been given by Weiland and Wilhelmsson. Hence our work 
complements the earlier work in the sense that the analytical results obtained are in 
agreement with the numerical solutions. After the saturation point the amplitudes 
quickly decrease. This effect is shown in figure 1 when all amplitudes are assumed to be 
equal in ihe presence of linear and nonlinear dissipative terms. If, however, the 
amplitudes are different the saturation peaks will occur repeatedly as functions of time 
(see figure 2). Oraevskii et a1 (1973a, b) obtained a complete analytical solution to the 
nonlinear coupled mode equations including a third-order frequency shift. They found 
a soliton solution, and with more general initial conditions repeated explosions were 
obtained which could be expressed in terms of elliptic functions. Weiland and Wil- 
helmsson (1973) and Weiland (1974) extended this investigation to include a linear 
dissipation and also an imaginary part of third-order frequency shift. They gave the 
numerical solutions for the general nonlinear system of equations containing third- 
order nonlinear terms, and also some analytical results concerning linear dissipation 
and asymptotic behaviour. These numerical results have been compared with those 
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Figure 1. Curve I corresponds to the numerical solutions of Wilhelmsson, showing an 
unbounded solution ( y  = 0) and the stabilised solution (y # 0). Curve I1 corresponds to our 
analytical solution when u ( 0 )  = 0.6, I, = 0.6, eI2 = 0, Bo2 = n-14, BOl = - 714, Im aii = 0.05, 
showing an unbounded solution for y = ek1’2/v1’2 = 0 and a stabilised solution for y # 0. 
Curve I11 corresponds to our analytical solutions with only I, changed to 0.5. 

U 

Figure 2. ( a )  corresponds to the numerical solution of Wilhelmsson, showing repeated 
stabilised explosions. ( b )  corresponds to our analytical solution, showing repeated stabil- 
ised explosions with BOl = ~ ~ 1 3 ,  6’12 = TT, OO2 = - ~ 1 3 .  

obtained by us analytically, and found to be in agreement at least qualitatively, as can be 
seen in figures 1 and 2. 

As shown above, the effect of complex coupling coefficients of second-order 
nonlinear terms, the influence of linear dissipation as well as third-order effects were 
taken into account to obtain analytically a soliton solution. In the presence of 
dissipation, second- and third-order conductivities have a real part, which means that 
coupling factors are complex when one must include a linear dissipation in the system. It 
is well known (see for example Fukai et a1 (1969)) that the effect of cubic-order terms 
causes an amplitude-dependent frequency shift. As the waves grow they shift out of 
resonance and Aw ultimately becomes large. In the asymptotic limit of saturation, the 
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values of the amplitudes are determined by introducing an effective coupling coefficient 
of the third-order coupling term, and the values are found to be independent of the 
initial conditions. It is shown that the nonlinear dissipation stabilises all amplitudes. 
Also the periodic solutions have been found in terms of the Jacobian elliptic function. 
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